Graph-Based Seed Set Expansion for Relation Extraction Using Random Walk Hitting Times

نویسندگان

  • Joel Lang
  • James Henderson
چکیده

Iterative bootstrapping methods are widely employed for relation extraction, especially because they require only a small amount of human supervision. Unfortunately, a phenomenon known as semantic drift can affect the accuracy of iterative bootstrapping and lead to poor extractions. This paper proposes an alternative bootstrapping method, which ranks relation tuples by measuring their distance to the seed tuples in a bipartite tuple-pattern graph. In contrast to previous bootstrapping methods, our method is not susceptible to semantic drift, and it empirically results in better extractions than iterative methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First Hitting times of Simple Random Walks on Graphs with Congestion Points

We derive the explicit formulas of the probability generating functions of the first hitting times of simple random walks on graphs with congestion points using group representations. 1. Introduction. Random walk on a graph is a Markov chain whose state space is the vertex set of the graph and whose transition from a given vertex to an adjacent vertex along an edge is defined according to some ...

متن کامل

How Slow, or Fast, Are Standard Random Walks? - Analyses of Hitting and Cover Times on Tree

Random walk is a powerful tool, not only for modeling, but also for practical use such as the Internet crawlers. Standard random walks on graphs have been well studied; It is well-known that both hitting time and cover time of a standard random walk are bounded by O(n) for any graph with n vertices, besides the bound is tight for some graphs. Ikeda et al. (2003) provided “β-random walk,” which ...

متن کامل

An Eigenvalue Representation for Random Walk Hitting times and Its Application to the Rook Graph

Given an aperiodic random walk on a finite graph, an expression will be derived for the hitting times in terms of the eigenvalues of the transition matrix. The process of diagonalizing the transition matrix and its associated fundamental matrix will be discussed. These results will then be applied to a random walk on a rook graph. Lastly, a cover time bound depending on the hitting times will b...

متن کامل

Random Walks with Random Projections

Random projections have been widely used for dimensionality reduction of high dimensional problems. In this paper we show how to compute some popular random walk based proximity measures (hitting and commute times, personalized pagerank) using random projections in undirected graphs. A number of important graph-based real world applications such as image segmentation, collaborative filtering in...

متن کامل

Symmetry in Quantum Walks

A discrete-time quantum walk on a graph is the repeated application of a unitary evolution operator to a Hilbert space corresponding to the graph. Hitting times for discrete quantum walks on graphs give an average time before the walk reaches an ending condition. We derive an expression for hitting time using superoperators, and numerically evaluate it for the walk on the hypercube for various ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013